Abstract—In a manual examination of more than 7,000 issue reports from the bug databases of five open-source projects, we found 33.8% of all bug reports to be misclassified—that is, rather than referring to a code fix, they resulted in a new feature, an update to documentation, or an internal refactoring. This misclassification introduces bias in bug prediction models, confusing bugs and features: On average, 39% of files marked as defective actually never had a bug. We discuss the impact of this misclassification on earlier studies and recommend manual data validation for future studies.

Index Terms—Mining software repositories, bug reports, data quality, noise, bias

I. INTRODUCTION

In empirical software engineering, it has become commonplace to mine data from change and bug databases to detect where bugs have occurred in the past, or to predict where they will occur in the future. The accuracy of such measurements and predictions depends on the quality of the data. Therefore, mining software archives must take appropriate steps to assure data quality.

A general challenge in mining is to separate bugs from non-bugs. In a bug database, the majority of issue reports are classified as bugs—that is, requests for corrective code maintenance. However, an issue report may refer to “perfective and adaptive maintenance, refactoring, discussions, requests for help, and so on” [1]—that is, activities that are unrelated to errors in the code, and would therefore be classified in a non-bug category. If one wants to mine code history to locate or predict error prone code regions, one would therefore only consider issue reports classified as bugs. Such filtering needs nothing more than a simple database query.

However, all this assumes that the category of the issue report is accurate. In 2008, Antoniol et al. [1] raised the problem of misclassified issue reports—that is, reports classified as bugs, but actually referring to non-bug issues. If such mix-ups (which mostly stem from issue reporters and developers interpreting “bug” differently) occurred frequently and systematically they would introduce bias in data mining models threatening the external validity of any study that builds on such data: Predicting the most error-prone files, for instance, may actually yield files most prone to new features. But how often does such misclassification occur? And does it actually bias analysis and prediction?

These are the questions we address in this paper. From five open source projects (Section II), we manually classified more than 7,000 issue reports into a fixed set of issue report categories clearly distinguishing the kind of maintenance work required to resolve the task (Section III). Our findings indicate substantial data quality issues:

Issue report classifications are unreliable. In the five bug databases investigated, more than 40% of issue reports are inaccurately classified (Section IV)

Every third bug is not a bug. 33.8% of all bug reports do not refer to corrective code maintenance (Section V).

After discussing the possible sources of these misclassifications (Section VI), we turn to the consequences. We find that the validity of studies regarding the distribution and prediction of bugs in code is threatened:

Files are wrongly marked as fixed. Due to misclassifications, 39% of files marked as defective actually have never had a bug (Section VII).

Files are wrongly marked to be error-prone. Between 16% and 40% of the top 10% most defect-prone files do not belong in this category after reclassification (Section VIII).

Section IX details studies affected and unaffected by these issues. After discussing related work (Section X) and threats to validity (Section XI), we close with conclusion and consequences (Section XII).

II. STUDY SUBJECTS

We conducted our study on five open-source JAVA projects described in Table I. We aimed to select projects that were under active development and were developed by teams that follow strict commit and bug fixing procedures similar to industry. We also aimed to have a more or less homogeneous process.
data set that eased the manual inspection phase. Projects from
APACHE and MOZILLA seemed to fit our requirements best.
Additionally, we selected the five projects such that we cover at
least two different and popular bug tracking systems: Bugzilla\(^1\)
and Jira\(^2\). Three out of five projects (Lucene-Java, Jackrabbit,
and HTTPClient) use a Jira bug tracker. The remaining two
projects (Rhino, Tomcat5) use a Bugzilla tracker.

For each of the five projects, we selected all issue re-
ports that were marked as being RESOLVED, CLOSED, or
VERIFIED and whose resolution was set to FIXED and
performed a manual inspection on these issues. We disregarded
issues with resolution in progress or not being accepted, as
their features may change in the future.

The number of inspected reports per project can be found
in Table I. In total, we obtained 7,401 closed and fixed issue
reports. 1,810 of these reports originate from the Rhino and
Tomcat5 projects and represent Bugzilla issue reports. The
remaining of the 5,591 reports were filed in a Jira bug tracker.

III. Manually Classifying Bug Reports

To validate the issue categories contained in the project’s
bug databases, we manually inspected all 7,401 issue reports
and checked if the type of each report reflects the mainte-
nance task the developer had to perform in order to fix the
literature. For our manual inspections, we used
(a) the issue report itself, (b) all the attached comments and
discussions, as well as (c) the code change that was applied
to the source code. We analyzed code changes if and only
if neither the issue report nor its comments clarified the
underlying problem of the reported issue. Each issue report
was then categorized into one of eleven different issue report
categories shown in Table II.

To assign issue reports to one of the categories, we used a
fixed set of rules that describe how to classify issue reports
based on specific issue report properties. If none of these rules
applied, and if inspecting possible attached patches did not clarify the original problem, we left the original category un-
changed. Hence, we favored possible original misclassification noise over new misclassification noise introduced by manual

misclassification. The rule set used for classification is shown
in Table III. For each category, we also present a typical real
world example.

The manual classification was conducted in three phases as
shown in Figure 1:

1) In the first phase, the first author inspected all 7,401 issue
reports and assigned a report category using the set of
report classification rules.

2) The second author re-classified the set of issue reports
that were considered to be misclassified after phase one.

Again, the second author was using the fixed set of classi-
ﬁcation rules and the issue reports only; he had no access
to the classification results of the first phase. Overall,
3,093 misclassiﬁcation candidates got reinspected.

3) We then compared the classiﬁcation results from phase
one and phase two to detect classiﬁcation conﬂicts—issue
reports that were classiﬁed differently by the ﬁrst and
the second author. This affected 340 of the 3,093 re-
inspected issue reports; the other 94% were independently
classiﬁed identically by the ﬁrst and second author and
thus validated the accuracy and complexity of the rule
set. Each classiﬁcation conﬂict ﬁnally got resolved by a
joint pair-inspection of both authors, partially inducing
clariﬁcation and reﬁnements of the rule set. (Table III
lists the ﬁnal rule set.)

The first and second phase of the inspection process were
processed by one individual each. This ensures that all is-
issue reports across all projects are treated and categorized
equally. Every issue report reported as misclassiﬁed in this
paper was independently veriﬁed. We did not double check
whether the ﬁrst author did oversee misclassiﬁed reports. This
implies that the presented misclassiﬁcation ratios and impact
measurements can be considered as a lower bound. The effort

\(^{1}\)http://www.bugzilla.org/
^{2}http://www.atlassian.com/JIRA

TABLE II

THE ISSUE REPORT CATEGORIES USED FOR MANUAL CLASSIFICATION.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUG</td>
<td>Issue reports documenting corrective maintenance tasks that require semantic changes to source code.</td>
</tr>
<tr>
<td>RFE</td>
<td>Issue reports documenting an adaptive maintenance task whose resolving patch(es) implemented new functionality (request for enhancement; feature request).</td>
</tr>
<tr>
<td>IMPR</td>
<td>Issue reports documenting a perfective maintenance task whose resolution improved the overall handling or performance of existing functionality.</td>
</tr>
<tr>
<td>DOC</td>
<td>Issue reports solved by updating external (e.g. website) or code documentation (e.g. JavaDoc).</td>
</tr>
<tr>
<td>REFAC</td>
<td>Issues reports resolved by refactoring source code. Typically, these reports were filed by developers.</td>
</tr>
<tr>
<td>OTHER</td>
<td>Any issue report that did not fit into any of the other categories. This includes: reports requesting a backport (BACKPORT), code cleanups (CLEANUP), changes to specification (rather than documentation or code; SPEC), general development tasks (TASK), and issues regarding test cases (TEST). These subcategories are found in the public dataset accompanying this paper.</td>
</tr>
</tbody>
</table>

Fig. 1. The manual report inspection process.
TABLE III
CLASSIFICATION RULES

A report is categorized as **BUG** (Fix Request) if...
1) it reports a NullPointerException (NPE).
2) the discussion concludes that code had to be changed semantically to perform a corrective maintenance task.
3) it fixes runtime or memory issues caused by defects (e.g. endless loops).

Example: Tomcat5 report 28147 is categorized as **BUG** because it reports a bug that causes a "JasperException for jsp files that are symbolic links". The underlying issue was that tomcat used canonical instead of absolute paths. The applied fix touches one line replacing one method invocation. According to Rule 2, we classified the applied code change as a corrective maintenance task and thus the issue report as **BUG**.

A report is categorized as **RFE** (Feature Request) if...
1) it requests to implement a new access/getter method.
2) it requests to add new functionality.
3) it requests to support new object types, specifications, or standards.

Example: Lucene-Java report LUCENE-2074 is categorized as **BUG**. But the applied patch and the discussion unveil that a new versioning mechanism had to be implemented. The first comment by Uwe Schindler makes it explicit: "Here the patch. It uses an interface containing the needed methods to easily [sic] switch between both impl. The old one was deprecated [...]". This is reclassified as **RFE** by Rule 2.

A report is categorized as **DOC** (Documentation Request) if...
1) it discusses resource issues (time, memory) caused by non optimal algorithms or garbage collection strategies.
2) it discusses semantics-preserving changes (typos, formatting) to code, log messages, exception messages, or property fields.
3) it requests more or fewer log messages.
4) it requests changing the content of log messages.
5) it requests changing the type and/or the message of Exceptions to be thrown.
6) it requests changes supporting new input or output formats (e.g. for backward compatibility or user satisfaction).
7) it introduces concurrent versions of already existing functionalities.
8) it suggests upgrading or patching third party libraries to overcome issues caused by third party libraries.
9) it requests changes that correct/synchronize an already implemented feature according to specification/documentation.

Example: Jackrabbit report JCR-2892 is filed as **BUG** because of the title "Large fetch sizes have potentially deleterious effects on VM memory requirements when using Oracle". The algorithm fetches data from a database with a large amount of columns and rows, which caused the Oracle driver to allocate a large buffer. The resolution was to develop a new algorithm consuming less memory. This is an **IMPR** according to Rule 1 since no new functionality was implemented and since the program did not contain any defect.

A report is categorized as **ESR** (Error Reporting Request) if...
1) it discusses issues unrelated to the code (e.g. install issues).
2) it discusses bugs reported by the application.
3) it requests the implementation to be changed to make it more compatible with the environment.
4) it requests that the application should be changed to handle new cases.
5) it requests that the application should be changed to handle different types of data.
6) it requests that the application should be changed to handle different types of files.
7) it requests that the application should be changed to handle different types of formats.
8) it requests that the application should be changed to handle different types of inputs.
9) it requests that the application should be changed to handle different types of outputs.
10) it requests that the application should be changed to handle different types of features.

Example: Lucene-Java report LUCENE-1893 complains that "classes implement equals() but not hashCode()". This violated JAVA contracts but does not cause failures. Lucene-Java report LUCENE-289 requests "better support gcj compilation". According to our rules this is considered to be a compatibility improvement classified as **OTHER**.

The noise rates of the individual report categories and their variances are shown in Figure 2 as box plot. We excluded the categories **DOC** and **REFAC** from this plot since none of the analyzed bug tracking systems supported these report types. For the 10,884 inspections was 4 minutes per issue report on average, totaling 725 hours, or 90 working days.

IV. AMOUNT OF DATA NOISE

In this section, we show the amount of data noise and bias (with respect to issue report types) that is evident in the bug databases of the five analyzed projects (see Section II). We start analyzing the issue report data sets by measuring the false positive rates and slicing individual categories to show how many issue reports were misclassified and which categories these misclassified reports belong to. Later, we will discuss the impact and bias rates for data sets that map issue reports to code changes and source files. At the end, we will show how a simple model identifying the most defect-prone files is impacted by misclassified bug reports.

As overall noise rate we measured the **false positive rate**. The false positive rate represents the ratio between misclassified issue reports and all issue reports in the data set. The noise rate is independent from individual issue report categories. We will discuss individual categories in Section V. The higher the noise rate, the higher the threat that the noise might cause bias in approaches based on these data sets.

RQ1 Do bug databases contain data noise due to issue report misclassification, and how much?

Table IV shows the noise rate values for all five projects and for a combined data set containing the issue reports of all five projects. The noise rates for all projects lie between 37% and 47% and are surprisingly similar. The overall noise rate lies at 42.6%—that is, two out of five issue reports are wrongly typed. This unexpected high ratio raises threats to any approach based on raw issue report data sets.

<table>
<thead>
<tr>
<th>Project</th>
<th>Noise rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPClient</td>
<td>47.8%</td>
</tr>
<tr>
<td>Jackrabbit</td>
<td>37.6%</td>
</tr>
<tr>
<td>Lucene-Java</td>
<td>46.4%</td>
</tr>
<tr>
<td>Rhino</td>
<td>43.2%</td>
</tr>
<tr>
<td>Tomcat5</td>
<td>41.4%</td>
</tr>
<tr>
<td>All projects combined</td>
<td>42.6%</td>
</tr>
</tbody>
</table>

Over all five projects researched, we found 42.6% of all issue reports to be wrongly typed.

The boxes representing the categories IMPR and OTHER are based on the Jira projects only since Bugzilla does not support these types of reports. The noise rate for BUG reports is stable across all projects. Although the noise rates for IMPR reports show more variance all projects show comparable noise rates. The variance for RFE reports is huge and is partially caused by the fact that the overall number of RFE reports is low. Most feature requests have their origin from within the project, especially in open source projects, and it is questionable if or how many such feature requests are documented using a bug tracker.

V. BUGS VS. FEATURES

We have seen that two out of five issue reports are misclassified. And we have seen that there exist misclassified BUG reports. This is a threat for all empirical studies based on raw, unchecked bug data sets. To increase the level of detail, we sliced issue categories to show the percentage of issue reports that were associated with a category but marked as misclassified. We also include the individual categories the reclassified bug reports belong to when using our classification rule sets shown in Table III.

RQ2 Which percentage of issue reports associated with a category was marked as misclassified? Which category do these misclassified reports actually belong to?

Each slice contains the set of all issue reports originally associated to a given category and shows to which category the individual issue report actually belong to (Tables V(a)—V(c)). Thus, each slice table cell contains the percentage of issue reports originally associated to a given category that were manually classified into the issue category indicated by the row name. The lengths of the bars behind the percentage numbers represent the individual percentage visually. The last row of each slice states the percentage of reports originally associated to the corresponding category that were assigned a different category during manual classification. The values of this last row correspond to the category boxes in the box plot shown in Figure 2.

A. Bugs

V(a) contains the noise rate slice for the BUG issue category. We already discussed in Section IV that the noise rate for BUG reports is surprisingly stable across all projects. Tracking bug reports and their target categories shows that 13% of BUG reports are manually classified into the OTHER category containing multiple sub-categories (see Section III). Between 6% and 13% of filed BUG reports are improvement requests and up to 10% contain documentation issues. The fraction of bug reports containing feature requests lies between 2% and 7%. The striking number, however, is that on average 33.8% of all issue reports are misclassified.

Every third bug report is no bug report.

The noise rate slice for bug reports is of great importance. Bug reports are one of the most frequently used instruments to measure code quality when being mapped to code changes. But feature requests, improvement requests, and even documentation issues can also be mapped to code changes implementing a new feature, implementing an improvement, or fixing code comments. Thus, we cannot rely on natural filtering mechanisms that rule out misclassified BUG reports belonging to any report category that will not cause code changes being applied to source files. Studies that use bug data sets might be impacted by data noise as shown in V(a). The noise rates in this section include issue reports that might not be mapped to code changes or files. We will discuss the bias caused by bug data noise later in this paper.

B. Feature Requests

The noise rate slice for issues originally categorized as RFE is interesting because it shows a fundamental difference between Bugzilla and Jira trackers. As you can see in V(b) the false positive rates for all three Jira projects lie between zero and nine percent. The corresponding false positive rates jump to 57% and 60% for Bugzilla trackers. Interpreting these values, it seems that issue reports in Bugzilla trackers are less reliable than Jira reports. This matches the fact that the false positive rates for BUG reports in V(a) where larger for Bugzilla trackers, too. By default, Bugzilla trackers support less issue report types than Jira. This has the consequence that reporters and developers that file issue tickets not being bug reports use the only alternative label RFE.

C. Improvement Requests

The last noise rate slice shows how many improvement requests were differently categorized during manual inspection (see V(c)). The columns for Bugzilla tracker projects remain zero since by default Bugzilla trackers do not support these issue categories. For the remaining three projects, between 19%
<table>
<thead>
<tr>
<th>Classified category</th>
<th>HTTPClient</th>
<th>Jackrabbit</th>
<th>Lucene-Java</th>
<th>Rhino</th>
<th>Tomcat5</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUG</td>
<td>63.5%</td>
<td>75.1%</td>
<td>65.4%</td>
<td>59.2%</td>
<td>61.3%</td>
<td>66.2%</td>
</tr>
<tr>
<td>RFE</td>
<td>6.6%</td>
<td>1.9%</td>
<td>4.8%</td>
<td>0.0%</td>
<td>10.3%</td>
<td>5.1%</td>
</tr>
<tr>
<td>DOC</td>
<td>8.7%</td>
<td>1.5%</td>
<td>4.8%</td>
<td>0.0%</td>
<td>5.1%</td>
<td>3.1%</td>
</tr>
<tr>
<td>IMPR</td>
<td>13.0%</td>
<td>5.9%</td>
<td>7.9%</td>
<td>8.8%</td>
<td>12.0%</td>
<td>9.0%</td>
</tr>
<tr>
<td>REFAC</td>
<td>1.7%</td>
<td>0.9%</td>
<td>4.3%</td>
<td>10.2%</td>
<td>5.5%</td>
<td>2.8%</td>
</tr>
<tr>
<td>OTHER</td>
<td>6.4%</td>
<td>14.7%</td>
<td>12.7%</td>
<td>15.8%</td>
<td>12.9%</td>
<td>13.0%</td>
</tr>
<tr>
<td>Misclassifications</td>
<td>36.5%</td>
<td>24.9%</td>
<td>34.6%</td>
<td>40.8%</td>
<td>38.7%</td>
<td>33.8%</td>
</tr>
</tbody>
</table>

(b) Reports originally filed as RFE

<table>
<thead>
<tr>
<th>Classified category</th>
<th>HTTPClient</th>
<th>Jackrabbit</th>
<th>Lucene-Java</th>
<th>Rhino</th>
<th>Tomcat5</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUG</td>
<td>0.0%</td>
<td>0.7%</td>
<td>0.0%</td>
<td>3.6%</td>
<td>8.1%</td>
<td>2.8%</td>
</tr>
<tr>
<td>RFE</td>
<td>100.0%</td>
<td>91.3%</td>
<td>97.0%</td>
<td>42.9%</td>
<td>39.6%</td>
<td>72.6%</td>
</tr>
<tr>
<td>DOC</td>
<td>0.0%</td>
<td>2.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>18.1%</td>
<td>5.3%</td>
</tr>
<tr>
<td>IMPR</td>
<td>0.0%</td>
<td>0.7%</td>
<td>0.6%</td>
<td>19.0%</td>
<td>20.8%</td>
<td>8.6%</td>
</tr>
<tr>
<td>REFAC</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>15.5%</td>
<td>3.4%</td>
<td>3.2%</td>
</tr>
<tr>
<td>OTHER</td>
<td>0.0%</td>
<td>5.3%</td>
<td>2.4%</td>
<td>19.0%</td>
<td>10.1%</td>
<td>7.5%</td>
</tr>
<tr>
<td>Misclassifications</td>
<td>0.0%</td>
<td>8.6%</td>
<td>3.0%</td>
<td>57.1%</td>
<td>60.4%</td>
<td>24.7%</td>
</tr>
</tbody>
</table>

(c) Reports originally filed as IMPR

<table>
<thead>
<tr>
<th>Classified category</th>
<th>HTTPClient</th>
<th>Jackrabbit</th>
<th>Lucene-Java</th>
<th>Rhino</th>
<th>Tomcat5</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUG</td>
<td>2.6%</td>
<td>2.8%</td>
<td>1.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.3%</td>
</tr>
<tr>
<td>RFE</td>
<td>45.3%</td>
<td>18.8%</td>
<td>28.6%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>26.1%</td>
</tr>
<tr>
<td>DOC</td>
<td>11.6%</td>
<td>3.7%</td>
<td>7.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>6.2%</td>
</tr>
<tr>
<td>IMPR</td>
<td>26.7%</td>
<td>45.6%</td>
<td>35.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>38.8%</td>
</tr>
<tr>
<td>REFAC</td>
<td>4.3%</td>
<td>9.2%</td>
<td>14.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>10.9%</td>
</tr>
<tr>
<td>OTHER</td>
<td>9.5%</td>
<td>19.8%</td>
<td>13.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>29.4%</td>
</tr>
<tr>
<td>Misclassifications</td>
<td>73.3%</td>
<td>54.4%</td>
<td>64.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>61.2%</td>
</tr>
</tbody>
</table>

and 45% of improvement requests were manually categorized as RFE issue reports. Only a very marginal low fraction of 2% were manually classified as bug reports. On average, more than 60% of improvement requests were reclassified during manual inspection.

VI. SOURCES OF MISCLASSIFICATION

The misclassification ratios presented in the last section shed a low light on the data quality of bug databases. But why do bug tracking systems contain so many misclassified reports? We suspect the main reason to be that users and developers have different views and insights on bug classification, and that classification is not rectified once a bug has been resolved.

Bug tracking systems are a communication tools that allow users to file bug reports that will be fixed by developers. But users and developers might not share the same perspective regarding the project internals. In many cases, users have no project insight and might not have the ability to understand technical project details. Users tend to consider every problem as a bug. If the software does not comply with their expectations or with the provided documentation they file a bug report. It is the reporter who assigns an issue category.

On the other side, the developer is the expert of any technical detail of the program; she designed and implemented it. This difference between reporter and resolver already is a source of uncertainty. In contrast to a reporter, a developer certainly has the ability to distinguish between different problems and the required maintenance task to solve the issue. The developer would be the right person to categorize issue reports. But this is not how bug trackers work. Of course, the developer could change the issue category after resolution—but this happens rarely. In many cases there exists no real motivation to change the issue category once the cause for a problem is found and fixed.

We suspect this conceptional problem to explain many of the misclassification patterns we observed during manual inspection. It might also explain the high misclassification noise rates for issue reports originally marked as BUG. Using their default configuration, many bug tracking systems set the report type to BUG by default. Combined with the problem of who assigns the bug report type, we are left with many BUG reports that should have been filed as improvement request or even feature request.

The question of whether an issue is a bug or not is a hard one. And the definition of a bug not only differs between users and developers but also between developers themselves. In principal, if an issue bothers the user, the developer should fix it, whether or not he considers it to be a bug or not. From this perspective, the issue report category does not matter. But a data miner building a defect prediction model must distinguish
between bugs and non-bugs. Otherwise, the prediction model would predict changes, not defects.

Thus, for a data miner the question is whether these misclassification sources impact issue reports that can actually be mapped to source code changes. A documentation issue might require to change the documentation in the source file. So a data miner would map the report into source code and count it as a bug fix although the plain source code did not change.

VII. IMPACT ON MAPPING

The issue report misclassification noise presented in Sections IV and V can impact studies and tools that use these or similar data sets without validating them. As a first category, we discuss how misclassified issue reports impact approaches that map issue reports to source code changes—for instance, to identify files that had the most bugs in the past.

RQ3 What is the impact of misclassified issue reports when mapping issue reports to source code changes?

For this purpose, we followed the issue report mapping strategy described by Zimmermann et al. [2], a mapping method frequently replicated by studies. Scanning through commit messages, we detect issue report identifiers using regular expressions and key words. Once we mapped issue reports to revision, we can identify the set of issue reports that caused a change within the source file. Ignoring report severity we then count the number of distinct issue reports originally classified as BUG (num_original_bugs) for each source file of a given software project. Additionally, we count the number of distinct issue reports that were classified as BUG during manual inspection (num_classified_bugs). We measure the issue mapping bias using five different bias measurements.

MappingBiasRate: This bias rate expresses the percentage of false positive original BUG reports that could be mapped to code files. The mappingBiasRate corresponds to the false positive rates shown in Figure 2 but is limited to BUG reports that can be mapped to code changes.

DiffBugNumRate: The diffBugNumRate represents the number of files for which

\[
\text{num_original}_{-}\text{bugs} - \text{num_classified}_{-}\text{bugs} \neq 0.
\]

The measure ignores files for which the set of issue reports differ but not its size. Counting the number of fixes does not require the individual report to be known.

MissDefectRate: The missDefectRate is defined as

\[
\text{missDefectRate} = \frac{\text{numMissDefect}}{\text{numZeroOriginalDefect}}
\]

where numMissDefect represents the number of source files for which no original bug report could be mapped but that have at least one manually classified bug report assigned and where numZeroOriginalDefect is the number of source files having no original bug report assigned. This measure is important for defect classification models (distinction between has bug or has no bug).

FalseDefectRate: Analog to missDefectRate, we compute the falseDefectRate as

\[
\text{falseDefectRate} = \frac{\text{numFalseDefect}}{\text{numOriginalDefect}}
\]

where numFalseDefect is the number of source files with at least one original bug report assigned but no manually classified bug report and where numOriginalDefect is the total number of source files that got at least one original bug report assigned.

The values of these bias measures for our five target projects are shown in Table VI along with an additional column containing the average bias measures. For all projects, the number of misclassified BUG reports that can be mapped to source files (mappingBiasRate) lies above 20%. On average, every third bug report that can be associated to code changes is misclassified. This is a threatening high fraction and confirms that the misclassification noise rates presented in Section IV also affect issue reports that can be mapped to source code changes. On average, the mappingBiasRate is only five percent points below the average false positive rate for bug reports shown in V(a). The mappingBiasRate is also stable across different bug tracking systems indicating that bug tracking systems and their different usage behavior seem to have no impact on the mapping bias.

The second row of Table VI shows the fraction of files having a different number of mapped bug reports. The diffBugNumRate shows how many files will change their defect-prone ranking. This value might also have severe consequences for defect prediction models based on concrete bug count numbers (see Section VIII). On average 37% of all source files have biased bug count numbers. For the projects HTTPClient and Rhino the diffBugNumRate well exceeds the 50% margin.

Row three and row four of Table VI are interesting for approaches using classification models grouping source files into two groups of defect-prone and non defect-prone entities. The fractions of files that were falsely marked as defect free (missDefectRate) is very low and can be disregarded, except for Tomcat5. But the fraction of false classified defect-prone using a threshold of one to distinguish between defect-prone and non defect-prone entities (falseDefectRate) is significant. 20% to 70% of the original defect-prone marked source files contained no defect. An average falseDefectRate of 39% shows that mapping bias is a real threat to any defect prone classification model.

On average, 39% of all files marked as defective actually never had a bug.

To give some more details on the differences between original and classified bug counts (diffBugNumRate), Figure 3 shows stacked bars displaying the distribution of bug count differences among source files. Each stacked bar contains intervals reflecting the difference between the number of original bugs and the number of manual classified bugs (num_original_bugs − num_classified_bugs). A positive difference indicates that the number of defects fixed in the corresponding
TABLE VI
IMPACT OF MISCLASSIFIED ISSUE REPORTS ON MAPPING STRATEGIES AND APPROACHES

<table>
<thead>
<tr>
<th>Measure</th>
<th>HTTPClient</th>
<th>Jackrabbit</th>
<th>Lucene-Java</th>
<th>Rhino</th>
<th>Tomcat5</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>MappingBiasRate (False positive rate for mappable BUG reports)</td>
<td>24%</td>
<td>36%</td>
<td>21%</td>
<td>38%</td>
<td>28%</td>
<td>29%</td>
</tr>
<tr>
<td>DiffBugNumRate (How many files will change their defect-prone ranking?)</td>
<td>62%</td>
<td>17%</td>
<td>14%</td>
<td>52%</td>
<td>39%</td>
<td>37%</td>
</tr>
<tr>
<td>MissDefectRate (How many files with no original BUG have at least one classified BUG?)</td>
<td>1%</td>
<td>0.3%</td>
<td>0.7%</td>
<td>0%</td>
<td>38%</td>
<td>8%</td>
</tr>
<tr>
<td>FalseDefectRate (How many files with at least one original BUG have no classified BUG?)</td>
<td>70%</td>
<td>43%</td>
<td>29%</td>
<td>32%</td>
<td>21%</td>
<td>39%</td>
</tr>
</tbody>
</table>

![Fig. 3. The stacked bars show the diffBugNumRates and their frequencies. A diffBugNumRate of zero indicates no changes in the number of associated bugs; a positive diff rate indicates that too many bug reports were assigned.](image)

source files is actually lower. For files showing a negative difference more defect fixes could have been found. While most files show no or only little changes to their bug count there also exist files for which we registered up to 26 wrongly counted bugs. The number of files for which more bugs could have been found is marginal.

VIII. IMPACT ON BUG COUNTS

The results presented in the last section indicate that models based on noisy bug data sets containing misclassified bug reports might be severely biased. To verify this threat, we conducted an experiment that uses a simple quality model that identifies the most defect-prone source files by counting the number of distinct bug reports mapped to the corresponding file. If we can show that such a simple bug count model is affected, more complex models based on similar count or classification schemata might be affected too.

RQ4 How does bug mapping bias introduced by misclassified issue reports impact the TOP 5%, 10%, 15%, 20% of most defect-prone source files?

The experiment to answer RQ4 is visually described in Figure 4. We duplicate the set of source files and sort each copy by two different criteria. One set gets sorted in descending order using the number of original bug reports (num_original_bugs). The other set clone gets sorted in descending order using the number of manually classified bug reports (num_classified_bugs). In each set, the most defect-prone file is the top element. Comparing the top X% of both file sets (containing the same elements but in potentially different order) allows us to reason about the impact of mapping bias on models using bug counts to identify the most defect-prone entities. Since both cutoffs are equally large (the number of source files does not change, only their ranks), we can define the cutoff_difference as:

\[
\text{cutoff_difference} = \frac{\text{size of cutoff} - \text{size of intersection}}{\text{size of cutoff}}.
\]

The result is a number between zero and one where zero indicates that both cutoffs are identical and where a value of one implies two cutoffs with an empty intersection. A low cutoff_difference is desirable.

Table VII contains the cutoff_differences for all five projects using the top 5%, 10%, 15%, and 20%. Considering the top 5% cutoff the cutoff_differences lie between 11% and 29% and rise to a range between 16% and 35% for a cutoff size of 20%. The variance between the different cutoff sizes per project lies around 15% for HTTPClient and Tomcat5 and 5% for Lucene-Java and Rhino. The bias measured for all projects and cutoffs lies well above 10%. The results across all projects and cutoff sizes show that quality-measuring approaches using biased bug mappings would report a false positive rate between 16% and 40% for the top 10% most defect-prone files.

The experiment to answer RQ4 is visually described in Figure 4. We duplicate the set of source files and sort each copy by two different criteria. One set gets sorted in descending order using the number of original bug reports (num_original_bugs). The other set clone gets sorted in descending order using the number of manually classified bug reports (num_classified_bugs). In each set, the most defect-prone file is the top element. Comparing the top X% of both file sets (containing the same elements but in potentially different order) allows us to reason about the impact of mapping bias on models using bug counts to identify the most defect-prone entities. Since both cutoffs are equally large (the number of source files does not change, only their ranks), we can define the cutoff_difference as:

\[
\text{cutoff_difference} = \frac{\text{size of cutoff} - \text{size of intersection}}{\text{size of cutoff}}.
\]

The result is a number between zero and one where zero indicates that both cutoffs are identical and where a value of one implies two cutoffs with an empty intersection. A low cutoff_difference is desirable.

Table VII contains the cutoff_differences for all five projects using the top 5%, 10%, 15%, and 20%. Considering the top 5% cutoff the cutoff_differences lie between 11% and 29% and rise to a range between 16% and 35% for a cutoff size of 20%. The variance between the different cutoff sizes per project lies around 15% for HTTPClient and Tomcat5 and 5% for Lucene-Java and Rhino. The bias measured for all projects and cutoffs lies well above 10%. The results across all projects and cutoff sizes show that quality-measuring approaches using biased bug mappings would report a false positive rate between 16% and 40% for the top 10% most defect-prone files.

When predicting the top 10% most defect-prone files, 16% to 40% of the files do not belong in this category because of misclassification.

Table VIII shows the Spearman rank correlations for all source files in the corresponding intersections. These rank

![Fig. 4. The cutoff_difference for the top x%.](image)
correlations indicate the relative order for files that remain in the top X% most defect-prone source files. A correlation value of one means that there exist files that should not belong to the top cutoff but at least the relative order of the correctly classified files remains stable. Only the rank correlation values for HTTPClient remain above 0.7 for all cutoff sizes. For all other projects, the rank correlations lie below 0.7 (except Rhino top 10%) and reach correlation values close to zero.

<table>
<thead>
<tr>
<th></th>
<th>TOP 5%</th>
<th>TOP 10%</th>
<th>TOP 15%</th>
<th>TOP 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPClient</td>
<td>20%</td>
<td>20%</td>
<td>11%</td>
<td>25%</td>
</tr>
<tr>
<td>Jackrabbit</td>
<td>29%</td>
<td>40%</td>
<td>29%</td>
<td>35%</td>
</tr>
<tr>
<td>Lucene-Java</td>
<td>24%</td>
<td>20%</td>
<td>21%</td>
<td>18%</td>
</tr>
<tr>
<td>Rhino</td>
<td>11%</td>
<td>16%</td>
<td>14%</td>
<td>16%</td>
</tr>
<tr>
<td>Tomcat5</td>
<td>14%</td>
<td>21%</td>
<td>29%</td>
<td>21%</td>
</tr>
</tbody>
</table>

TABLE VIII
SPEARMAN RANK CORRELATIONS FOR ALL SOURCE FILES REMAINING IN THE INTERSECTIO N OF ORIGINAL AND CLASSIFIED MOST DEFECT-PRONE ENTITIES.

<table>
<thead>
<tr>
<th></th>
<th>TOP 5%</th>
<th>TOP 10%</th>
<th>TOP 15%</th>
<th>TOP 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPClient</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Jackrabbit</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Lucene-Java</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Rhino</td>
<td>−0.1</td>
<td>0.7</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Tomcat5</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

The threat to validity for all these papers is that the bug data set they have been evaluated on contains a mix of bugs and non-bugs. Hence, in their evaluation, they map and predict non-bugs as well as bugs. Users would be generally interested in predicting bugs rather than non-bugs, however; and we now no longer know how these approaches perform and compare when using a data set consisting only of true bugs. This threatens their external validity.

The approaches and techniques are still original, present excellent contributions, and can still provide good results. It may even be that removing data noise will improve their results. Assessing such effects for all earlier studies is beyond the scope of this paper; however, we provide rectified data for future studies.

How about studies using industrial bug data? In general, one might hypothesize that industry has stronger process rules and incentives (speak: measurements and goal metrics) that encourage accurate issue classification. This could also explain why predictors such as change bursts [8] or network metrics [10] work extremely well on industrial data sets, but poorly on open source data sets. Exploring the quality of such data sets and differences between industrial and open source projects again is a topic for future research.

B. Preventing Misclassification Threats

How can we improve the quality of bug datasets?

Test cases. Approaches like iBugs [11] validate bug reports using test cases to replicate bugs. This straight-forward filtering mechanism ensures each bug is valid. Consequently, studies relying on the iBugs data sets are not affected by issues discussed in this paper.

Code history. Kim et al. [12] uses version control history to verify that applied code changes are actual fixes. This approach solely relies on code evolution and thus is not sensitive to bug database issues. Again, this is a recommended procedure to prevent misclassification.

Automatic classification. Automatic classification models as described by Antoniol et al. [1] can be used to categorize issue reports based on the text of the issue report itself with precision rates between 77% and 82%. Although, constructing classification training sets requires initial human effort, such predictors should quickly reduce the required human interaction.

Rectified Data Sets. Our data sets rectified by manual bug classification are publicly available (Section XII); we encourage their use for further research.

We strongly recommend to use additional data (e.g. tests) or human effort to reduce the high amount of misclassified issue reports. This means that the contributions of the mining software archive field can still all be applied; one just needs a bit of validation in the first place.

X. RELATED WORK

Bug reports are a key factor of software maintenance. Many mining approaches are based on bug databases in some way, either as standalone artifact or as a combination between...
bug reports and code changes. The quality of bug reports is frequently topic of research studies [13], [14], [15], [16]. Many of these studies show that bug reports often contain too little or too incomplete information in order to reproduce and fix them. It is possible to automatically detect bug report duplicates [17], [18] that, when combined, might fill information gaps that prevent bug report fixes. But bug fixes have also been used to estimate development efforts [19], [20], [21], [22], bug triage [23], [24] or automatic bug assignment [25], [26].

Combining bug reports with source code changes opens the possibility to map bug fixes to individual code artifacts. Fischer et al. [3] and Čubranić and Murphy [27] were among the first that introduced heuristics that allow mapping bug reports to applied code changes. But as Mockus [28] and Liebchen and Shepperd [29] mentioned, data quality in empirical software engineering can be low and might impact the outcome of many empirical studies. Liebchen and Shepperd [29] found that only a tiny fraction of software engineering papers suggest data quality issues and their possible effect on their analysis results. Nguyen et al. [30] reported similar issues on commercial projects that usually follow more strict development guidelines compared to open source projects.

Recent studies investigates bug and commit bias and their potential implication for defect prediction models which might interfere with the results presented in this paper [31], [32], [33]. Their results showed the presence of systematic data noise and bias in several open source data sets affecting the performance of defect prediction models. As a consequence, strategies to improve mappings between bug reports and code changes have been proposed. Bird et al. [34] developed a tool to manually annotate bug reports and code changes to reduce the overhead of manual data point inspection. Later, Wu et al. [35] presented an automatic link recovery algorithm that learns bug report and code change criteria to recover missing links between bug reports and code changes. Kim et al. [36] provided guidelines for acceptable noise levels and proposed a noise detection and elimination algorithm.

In 2008, Antoniol et al. [1] showed that a significant number of bug reports refer to maintenance tasks that are not corrective. In other words, a significant number of bug reports are not documenting software bugs but to other maintenance tasks. This is in particular important since many of the bias reducing approaches are seeking for good and correct mapping strategies but rely on the fact that reported bugs are indeed documenting corrective maintenance tasks. In this paper, we want to extend the research initially conducted by Antoniol et al. [1] by measuring the amount of data noise introduced by misclassified bug reports. We also extend their work by showing the possible impact of misclassified bug report types on bug mapping strategies and machine learning models based on such noisy data sets—such as defect prediction models.

XI. Threats to Validity

Empirical studies like this one have their own threats to validity. We identified three noteworthy threats:

Manual inspection. First and most noteworthy, the manual inspection phase is crucial. To counter the threat of us making classification mistakes, we chose a setup that ensures that every misclassified bug report is cross-validated and that classification conflicts have to pass a third inspection. Still, we cannot rule out that the manual inspection contains errors. Additionally, we make our entire dataset available for independent assessment.

Classification rules. Second, the set of classification rules is only one possibility to classify issue reports. There exists no clear definition-separating feature and improvement requests. Using a different classification rule set will certainly impact the results presented in this paper. We counter this threat by listing the complete rules verbatim.

Study subjects. Third, the projects and bug tracking systems investigated might not be representative, threatening the external validity of our findings. Although Jira and Bugzilla are popular bug tracking systems, we cannot ensure that other projects using the same or even other bug tracking systems contain comparable amount and distribution of misclassified issue reports.

XII. Conclusion and Consequences

Our findings suggest widespread issues with the separation of bugs and non-bugs in software archives, which can severely impact the accuracy of tools and studies that leverage such data. The consequences are straightforward:

- First and foremost, automated quantitative analysis should always include human qualitative analysis of the input data—and of the findings. Approaches relying on bug datasets should be preceded by a careful manual validation of data quality; at least of a significant sample. Data quality should be discussed as a threat to validity.
- Bug prediction models trained and evaluated on biased data sets are threatened to predict changes instead of bugs. Filtering out non-bugs when estimating code quality might even improve results.
- The categorization of bug reports is dependent on the perspective of the observer. Approaches using bug data sets should validate whether the perspective of the prediction model matches the perspective of the bug creator.

Generally, one should always be aware that not all bugs should be treated equal. Many bugs are of little to no consequence, while a few ones—such as security or privacy issues—can easily damage the reputation of the entire product or even threaten the existence of the company. Assessing such consequences cannot be left to machines alone.

Hence, dealing with bug databases will always require human effort—an investment that, however, pays off in the end. Our motivation for this work was to have a well-classified set of bug reports and features, which we now can leverage (and share) for future research. In the long run, better data will lead to better recommendations that will make developers more conscious of maintaining data quality. Detailed refer-
ences, all data sets (original and rectified), all slices and more information can be found at:

http://www.softevo.org/bugclassify

ACKNOWLEDGMENTS
Juan Pablo Galeotti, Eva May, and Kevin Streit provided useful feedback. We also thank Brendan Murphy (Microsoft) and Christian Holler (Mozilla) for insightful discussions and feedback.

REFERENCES